Part Number Hot Search : 
25ZNIL OM7608SC D78F9418 CXD2540Q XXXEH ADE309 D8066D AD73522
Product Description
Full Text Search
 

To Download VNQ690SP Datasheet File

  If you can't view the Datasheet, Please click here to try to view without PDF Reader .  
 
 


  Datasheet File OCR Text:
 (R)
VNQ690SP
QUAD CHANNEL HIGH SIDE SOLID STATE RELAY
TYPE VNQ690SP
(*) Per each channel
s OUTPUT s
RDS(on) 90m (*)
IOUT 10 A
VCC 36 V
CURRENT PER CHANNEL: 10A CMOS COMPATIBLE INPUTS s OPEN LOAD DETECTION (OFF STATE) s UNDERVOLTAGE & OVERVOLTAGE n SHUT- DOWN s OVERVOLTAGE CLAMP s THERMAL SHUT-DOWN s CURRENT LIMITATION s VERY LOW STAND-BY POWER DISSIPATION s PROTECTION AGAINST: n LOSS OF GROUND & LOSS OF VCC s REVERSE BATTERY PROTECTION (**) DESCRIPTION The VNQ690SP is a monolithic device made by using| STMicroelectronics VIPower M0-3 ABSOLUTE MAXIMUM RATING
Symbol VCC -VCC IOUT IR IIN ISTAT IGND
10
1
PowerSO-10TM ORDER CODES
PACKAGE PowerSO-10 TUBE VNQ690SP T&R VNQ690SP13TR
Technology, intended for driving resistive or inductive loads with one side connected to ground. This device has four independent channels. Builtin thermal shut down and output current limitation protect the chip from over temperature and short circuit.
Parameter Supply voltage (continuous) Reverse supply voltage (continuous) Output current (continuous), per each channel Reverse output current (continuous), per each channel Input current Status current Ground current at TC<25C (continuous) Electrostatic Discharge (Human Body Model: R=1.5K; C=100pF) - INPUT - STATUS - OUTPUT - VCC Power dissipation at TC=25C Maximum Switching Energy (L=0.38mH; RL=0; Vbat=13.5V; Tjstart=150C; IL=14A) Junction operating temperature Storage temperature
Value 41 -0.3 Internally limited -15 +/- 10 +/- 10 -200 4000 4000 5000 5000 78 53 -40 to 150 -65 to 150 Rev. 1
Unit V V A A mA mA mA V V V V W mJ C C
VESD
Ptot EMAX Tj Tstg
(**) See application schematic at page 8
July 2004
1/19
VNQ690SP
BLOCK DIAGRAM
VCC
OVERVOLTAGE UNDERVOLTAGE DEMAG 1
DRIVER 1
OUTPUT 1 ILIM1 DEMAG 2
INPUT 1 INPUT 2 INPUT 3 INPUT 4 STATUS STATUS
DRIVER 4 DRIVER 2
OUTPUT 2 ILIM2 DEMAG 3
LOGIC
DRIVER 3
OUTPUT 3 ILIM3 DEMAG 4
OVERTEMP. 1 OVERTEMP. 2 OVERTEMP. 3 OVERTEMP. 4
OUTPUT 4 ILIM4
OPEN LOAD OFF-STATE
GND
CURRENT AND VOLTAGE CONVENTIONS
IS IIN1 INPUT 1 VCC OUTPUT 1 VIN1 VIN2 IIN2 INPUT 2 IIN3 INPUT 3 VIN3 IIN4 INPUT 4 VIN4 STATUS VSTAT OUTPUT 4 GND VOUT4 OUTPUT 3 VOUT3 IOUT4 OUTPUT 2 IOUT3 VOUT2 IOUT1 IOUT2
VF1 (*)
VCC VOUT1
ISTAT
IGND
(*) VFn = VCCn - VOUTn during reverse battery condition
2/19
VNQ690SP
CONFIGURATION DIAGRAM (TOP VIEW) & SUGGESTED CONNECTIONS FOR UNUSED AND N.C. PINS
STATUS INPUT 4 INPUT 3 INPUT 2 INPUT 1
6 7 8 9 10 11 VCC
5 4 3 2 1
GND OUTPUT 4 OUTPUT 3 OUTPUT 2 OUTPUT 1
Connection / Pin Floating To Ground
Status X
N.C. X X
Output X
Input X Through 10K resistor
THERMAL DATA
Symbol Rthj-case Rtj-amb
(1) (2)
Parameter Thermal resistance junction-case (MAX) per channel Thermal resistance junction-ambient (MAX)
Value 2 52 (1) 37 (2)
Unit C/W C/W
When mounted on a standard single-sided FR-4 board with 0.5cm of Cu (at least 35 m thick). When mounted on a standard single-sided FR-4 board with 6cm of Cu (at least 35 m thick).
ELECTRICAL CHARACTERISTICS (VCC=6V up to 24V; -40CSymbol VCC (#) VUSD (#) VUVhyst (#) VOV (#) VOVhyst (#) Parameter Operating supply voltage Undervoltage shutdown Undervoltage hysteresis Overvoltage shutdown Overvoltage hysteresis Test Conditions Min 6 3.5 0.2 36 0.25 Typ 13 4.6 Max 36 6 1 Unit V V V V V A A mA m m A A A A
Off state; VIN=VOUT=0V; VCC=13.5V IS (#) Supply current Off state; VIN=VOUT=0V; VCC=13.5V Tj=25C On state; VIN=3.25V; 9V(#) Per device.
12 12 6
40 25 12 90 180
On state resistance Off State Off State Off State Off State Output Current Output Current Output Current Output Current
IOUT=1A; Tj=25C; 9V50 0 5 3
SWITCHING (VCC=13V)
Symbol td(on) td(off) dVOUT /dt(on) Parameter Turn-on delay time Turn-off delay time Turn-on voltage slope Test Conditions RL=13 channels 1,2,3,4 RL=13 channels 1,2,3,4 RL=13 channels 1,2,3,4 Min Typ 30 30 See relative diagram See relative diagram Max Unit s s V/s
dVOUT /dt(off)
Turn-off voltage slope
RL=13 channels 1,2,3,4
V/s
3/19
VNQ690SP
ELECTRICAL CHARACTERISTICS (continued) PROTECTIONS (per each channel) (see note 1)
Symbol TTSD TR Thyst ILIM Vdemag VSTAT ILSTAT CSTAT VSCL Parameter Shutdown temperature Reset temperature Thermal hysteresis DC Short circuit current Turn-off output voltage clamp Status low output voltage Status leakage current Status pin input capacitance Status clamp voltage Test Conditions Min 150 135 7 10 Typ 170 15 14 Max 200 25 20 20 VCC-41 VCC-48 VCC-55 0.5 10 25 6 6.8 -0.7 8 Unit C C C A A V V A pF V V
9VNote 1: To ensure long term reliability under heavy overload or short circuit conditions, protection and related diagnostic signals must be used together with a proper software strategy. If the device is subjected to abnormal conditions, this software must limit the duration and number of activation cycles.
LOGIC INPUT (per each channel)
Symbol VIL VIH VHYST IIH IIL VICL Parameter Input Low Level Voltage Input High Level Voltage Input Hysteresis Voltage Input high level voltage Input Current Input Clamp Voltage Test Conditions Min 3.25 0.5 VIN=3.25V VIN=1.25V IIN=1mA IIN=-1mA 10 1 6 6.8 -0.7 8 Typ Max 1.25 Unit V V V A A V V
OPENLOAD DETECTION (off state) per each channel
Symbol tSDL VOL TDOL Parameter Status Delay Openload Voltage Detection Threshold Openload Detection Delay at Turn Off Test Conditions See Figure 1 (Openload detection reading must be performed after TDOL). VIN=0V VCC=18V (*) Min Typ Max 20 1.5 2.5 3.5 300 Unit s V s
VCC - OUTPUT DIODE
Symbol VF Parameter Forward on Voltage Test Conditions -IOUT=0.9A; Tj=150C Min Typ Max 0.6 Unit V
4/19
VNQ690SP
ELECTRICAL TRANSIENT REQUIREMENTS
ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 ISO T/R 7637/1 Test Pulse 1 2 3a 3b 4 5 Class C E I C C C C C C II C C C C C E III C C C C C E IV C C C C C E I -25 V +25 V -25 V +25 V -4 V II -50 V +50 V -50 V +50 V -5 V TEST LEVELS III IV -75 V +75 V -100 V +75 V -6 V -100 V +100 V -150 V +100 V -7 V Delays and Impedance 2 ms 10 0.2 ms 10 0.1 s 50 0.1 s 50 100 ms, 0.01
Test Levels Result
Contents All functions of the device are performed as designed after exposure to disturbance. One or more functions of the device is not performed as designed after exposure and cannot be returned to proper operation without replacing the device.
SWITCHING CHARACTERISTICS
VLOAD 90% 80%
dVOUT/dt(on)
dVOUT/dt(off)
10% t VIN
td(on)
tr
td(off)
t
5/19
1
VNQ690SP
TRUTH TABLE (per each channel)
CONDITIONS Normal Operation Overtemperature Undervoltage Overvoltage Current Limitation Output Voltage > VOL INPUT L H L H L H L H L H L H OUTPUT L H L L L L L L L X H H STATUS H H H L X X H H H H L H
Figure 1: Status timing waveforms
OPENLOAD STATUS TIMING VIN
OVERTEMP STATUS TIMING
VIN
VSTAT tDOL tSDL
VSTAT tSDL tSDL
6/19
2
VNQ690SP
Figure 2: Waveforms
NORMAL OPERATION INPUTn LOAD VOLTAGEn STATUS UNDERVOLTAGE VUSDhyst VUSD INPUTn LOAD VOLTAGEn STATUS undefined
VCC
OVERVOLTAGE VCCOPENLOAD with external pull-up INPUTn LOAD VOLTAGEn STATUS tDOL tDOL VOL
VCC>VOV
Tj INPUTn LOAD CURRENTn STATUS
TTSD TR
OVERTEMPERATURE
7/19
1
VNQ690SP
APPLICATION SCHEMATIC
+5V
+5V
Rprot STATUS
VCC
Dld Rprot INPUT1 OUTPUT1 C
Rprot
INPUT2 OUTPUT2
Rprot INPUT3 Rprot INPUT4 GND OUTPUT4 OUTPUT3
RGND VGND
DGND
Note: Channels 3 & 4 have the same internal circuit as channel 1 & 2.
GND PROTECTION REVERSE BATTERY
NETWORK
AGAINST
Solution 1: Resistor in the ground line (RGND only). This can be used with any type of load. The following is an indication on how to dimension the RGND resistor. 1) RGND 600mV / (IS(on)max). 2) RGND (-VCC) / (-IGND) where -IGND is the DC reverse ground pin current and can be found in the absolute maximum rating section of the device's datasheet. Power Dissipation in RGND (when VCC<0: during reverse battery situations) is: PD= (-VCC)2/RGND This resistor can be shared amongst several different HSD. Please note that the value of this resistor should be calculated with formula (1) where IS(on)max becomes the
sum of the maximum on-state currents of the different devices. Please note that if the microprocessor ground is not common with the device ground then the RGND will produce a shift (IS(on)max * RGND) in the input thresholds and the status output values. This shift will vary depending on how many devices are ON in the case of several high side drivers sharing the same RGND. If the calculated power dissipation leads to a large resistor or several devices have to share the same resistor then the ST suggests to utilize Solution 2 (see below). Solution 2: A diode (DGND) in the ground line. A resistor (RGND=1k) should be inserted in parallel to DGND if the device will be driving an inductive load. This small signal diode can be safely shared amongst several different HSD. Also in this case, the presence of the ground network will produce a shift (j600mV) in the input threshold and the status output values if the microprocessor ground is not common with the device
8/19
1
VNQ690SP
ground. This shift will not vary if more than one HSD shares the same diode/resistor network. Series resistor in INPUT and STATUS lines are also required to prevent that, during battery voltage transient, the current exceeds the Absolute Maximum Rating. Safest configuration for unused INPUT and STATUS pin is to leave them unconnected.
C I/Os PROTECTION:
If a ground protection network is used and negative transient are present on the VCC line, the control pins will be pulled negative. ST suggests to insert a resistor (Rprot) in line to prevent the C I/Os pins to latch-up. The value of these resistors is a compromise between the leakage current of C and the current required by the HSD I/Os (Input levels compatibility) with the latch-up limit of C I/Os. -VCCpeak/Ilatchup Rprot (VOHC-VIH-VGND) / IIHmax Calculation example: For VCCpeak= - 100V and Ilatchup 20mA; VOHC 4.5V 5k Rprot 65k. Recommended Rprot value is 10k.
LOAD DUMP PROTECTION
Dld is necessary (Voltage Transient Suppressor) if the load dump peak voltage exceeds VCC max DC rating. The same applies if the device will be subject to transients on the VCC line that are greater than the ones shown in the ISO T/R 7637/1 table.
9/19
VNQ690SP
Off State Output Current
IL(off1) (A)
3.5 3.25 3 2.75 2.5 2.25 2 1.75 1.5 1.25 1 -50 -25 0 25 50 75 100 125 150 175
High Level Input Current
Iih (A)
5 4.5
Vcc=24V Vout=0V
Vin=3.25V
4 3.5 3 2.5 2 1.5 1 0.5 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Input Clamp Voltage
Vicl (V)
8 7.75
Status Leakage Current
Ilstat (A)
0.05 0.045
Iin=1mA
7.5 7.25 7 6.75 6.5 6.25 6 -50 -25 0 25 50 75 100 125 150 175 0.04 0.035 0.03 0.025 0.02 0.015 0.01 -50 -25
Vstat=5V
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
Status Low Output Voltage
Vstat (V)
0.8 0.7
Status Clamp Voltage
Vscl (V)
7.4 7.3
Istat=1.6mA
0.6 0.5 0.4 0.3 0.2 0.1 0 -50 -25 0 25 50 75 100 125 150 175 7.2 7.1 7 6.9 6.8 6.7 6.6 -50
Istat=1mA
-25
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
10/19
VNQ690SP
On State Resistance Vs Tcase
Ron (mOhm)
160 140 120 100
On State Resistance Vs VCC
Ron (mOhm)
160
Tc= 150C Iout=1A Vcc=9V; 18V & 36V
140
120
Iout=1A
100
80 80 60 60 40 20 0 -50 -25 0 25 50 75 100 125 150 175 40
Tc= 25C Tc= -40C
20 0 5 10 15 20 25 30 35 40
Tc (C)
Vcc (V)
ILIM Vs Tcase
Ilim (A)
25 22.5
Input High Level
Vih (V)
4 3.75
Vcc=13V
20 17.5 15 12.5 10 7.5 5 -50 -25 0 25 50 75 100 125 150 175 3.5 3.25 3 2.75 2.5 2.25 2 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Input Low Level
Vil (V)
2.6 2.4 2.2 2
Input Hysteresis Voltage
Vihyst (V)
1.4 1.3 1.2 1.1 1
1.8 0.9 1.6 0.8 1.4 1.2 1 -50 -25 0 25 50 75 100 125 150 175 0.7 0.6 0.5 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
11/19
VNQ690SP
Overvoltage Shutdown
Vov (V)
50 47.5 45
Openload Off State Voltage Detection Threshold
Vol (V)
5 4.5
Vin=0V
4 3.5
42.5 40 37.5 35
3 2.5 2 1.5 1
32.5 30 -50 -25 0 25 50 75 100 125 150 175
0.5 0 -50 -25 0 25 50 75 100 125 150 175
Tc (C)
Tc (C)
Turn-on Voltage Slope
dVout/dt(on) (V/ms)
500 450 400 350 300 250 200 150 100 50 0 -50 -25 0 25 50 75 100 125 150 175
Turn-off Voltage Slope
dVout/dt(off) (V/ms)
600 550
Vcc=13V RI=13Ohm
500 450 400 350 300 250 200 150 100 -50
Vcc=13V RI=13Ohm
-25
0
25
50
75
100
125
150
175
Tc (C)
Tc (C)
12/19
VNQ690SP
Maximum turn off current versus load inductance
ILMAX (A) 100
10
A B C
1 0.01 0.1 1 L(mH ) 10 100
A = Single Pulse at TJstart=150C B= Repetitive pulse at T Jstart=100C C= Repetitive Pulse at T Jstart=125C Conditions: VCC=13.5V Values are generated with R L=0 In case of repetitive pulses, Tjstart (at beginning of each demagnetization) of every pulse must not exceed the temperature specified above for curves B and C. VIN, IL Demagnetization Demagnetization Demagnetization
t
13/19
VNQ690SP
PowerSO-10TM THERMAL DATA
PowerSO-10TM PC Board
Layout condition of Rth and Zth measurements (PCB FR4 area= 58mm x 58mm, PCB thickness=2mm, Cu thickness=35m, Copper areas: from minimum pad lay-out to 8cm2).
Rthj-amb Vs PCB copper area in open box free air condition
RTHj_amb (C/W)
55
Tj-Tamb=50C
50 45 40 35 30
0 2 4 6 8 10
PCB Cu heatsink area (cm^2)
14/19
VNQ690SP
Thermal Impedance Junction Ambient Single Pulse
ZT H (C/W) 1000
100
Footprint 6 cm 2
10
1
0.1 0.0001 0.001 0.01 0.1 1 T ime (s) 10 100 1000
Thermal fitting model of a quad HSD in PowerSO-16
Pulse calculation formula
Z TH = R TH + Z THtp ( 1 - )
where
Tj_1
C1
C2
C3
C4
C5
C6
= tp T
Footprint 0.18 0.8 0.7 0.8 13 37 0.0006 1.50E-03 1.75E-02 0.4 0.75 3 6
R1 Pd1 C13
R2
R3
R4
R5
R6
Thermal Parameter
Area/island (cm2) R1 (C/W) R2 (C/W) R3 ( C/W) R4 (C/W) R5 (C/W) R6 (C/W) C1 (W.s/C) C2 (W.s/C) C3 (W.s/C) C4 (W.s/C) C5 (W.s/C) C6 (W.s/C)
Tj_2
C14
R13 Pd2
R14
R17
R18
Tj_3
C7
C8
C9
C10
C11
C12
22
R7 Pd3 C15
R8
R9
R10
R11
R12
Tj_4
C16
R15 Pd4
R16
T_amb
5
15/19
VNQ690SP
PowerSO-10TM MECHANICAL DATA
DIM. A A (*) A1 B B (*) C C (*) D D1 E E2 E2 (*) E4 E4 (*) e F F (*) H H (*) h L L (*) (*)
(*) Muar only POA P013P
mm. MIN. 3.35 3.4 0.00 0.40 0.37 0.35 0.23 9.40 7.40 9.30 7.20 7.30 5.90 5.90 1.27 1.25 1.20 13.80 13.85 0.50 1.20 0.80 0 2 1.80 1.10 8 8 0.047 0.031 0 2 1.35 1.40 14.40 14.35 0.049 0.047 0.543 0.545 TYP MAX. 3.65 3.6 0.10 0.60 0.53 0.55 0.32 9.60 7.60 9.50 7.60 7.50 6.10 6.30 MIN. 0.132 0.134 0.000 0.016 0.014 0.013 0.009 0.370 0.291 0.366 0.283 0.287 0.232 0.232
inch TYP. MAX. 0.144 0.142 0.004 0.024 0.021 0.022 0.0126 0.378 0.300 0.374 300 0.295 0.240 0.248 0.050 0.053 0.055 0.567 0.565 0.002 0.070 0.043 8 8
B
0.10 A B
10
H
E
E2
E4
1
SEATING PLANE e
0.25
B
DETAIL "A"
A
C D = D1 = = = SEATING PLANE
h
A F A1
A1
L DETAIL "A"
P095A
16/19
VNQ690SP
PowerSO-10TM SUGGESTED PAD LAYOUT
14.6 - 14.9
B
TUBE SHIPMENT (no suffix)
CASABLANCA MUAR
C
10.8 - 11 6.30
A A
C
0.67 - 0.73 1 2 3 4 5 10 9 8 7 6 0.54 - 0.6
B
9.5
All dimensions are in mm.
1.27
Base Q.ty Bulk Q.ty Tube length ( 0.5) Casablanca Muar 50 50 1000 1000 532 532
A
B
C ( 0.1) 0.8 0.8
10.4 16.4 4.9 17.2
TAPE AND REEL SHIPMENT (suffix "13TR")
REEL DIMENSIONS
Base Q.ty Bulk Q.ty A (max) B (min) C ( 0.2) F G (+ 2 / -0) N (min) T (max) 600 600 330 1.5 13 20.2 24.4 60 30.4
All dimensions are in mm.
TAPE DIMENSIONS
According to Electronic Industries Association (EIA) Standard 481 rev. A, Feb. 1986 Tape width Tape Hole Spacing Component Spacing Hole Diameter Hole Diameter Hole Position Compartment Depth Hole Spacing W P0 ( 0.1) P D ( 0.1/-0) D1 (min) F ( 0.05) K (max) P1 ( 0.1) 24 4 24 1.5 1.5 11.5 6.5 2
End
All dimensions are in mm.
Start Top cover tape 500mm min Empty components pockets saled with cover tape. User direction of feed 500mm min No components Components No components
17/19
1
VNQ690SP
REVISION HISTORY
Date Revision - Minor changes - Current and voltage convention update (page 2). - "Configuration diagram (top view) & suggested connections for unused and n.c. pins" insertion (page 3). Jul 2004 1 - 6 cm2 Cu condition insertion in Thermal Data table (page 3). - VCC - OUTPUT DIODE section update (page 4). - PROTECTIONS note insertion (page 4) - Revision History table insertion (page 18). - Disclaimers update (page 19). Description of Changes
18/19
1
VNQ690SP
Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may results from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics. The ST logo is a trademark of STMicroelectronics. All other names are the property of their respective owners (c) 2004 STMicroelectronics - Printed in ITALY- All Rights Reserved. STMicroelectronics GROUP OF COMPANIES Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States http://www.st.com
19/19


▲Up To Search▲   

 
Price & Availability of VNQ690SP

All Rights Reserved © IC-ON-LINE 2003 - 2022  

[Add Bookmark] [Contact Us] [Link exchange] [Privacy policy]
Mirror Sites :  [www.datasheet.hk]   [www.maxim4u.com]  [www.ic-on-line.cn] [www.ic-on-line.com] [www.ic-on-line.net] [www.alldatasheet.com.cn] [www.gdcy.com]  [www.gdcy.net]


 . . . . .
  We use cookies to deliver the best possible web experience and assist with our advertising efforts. By continuing to use this site, you consent to the use of cookies. For more information on cookies, please take a look at our Privacy Policy. X